ar X iv : 0 80 1 . 30 99 v 3 [ m at h . N A ] 1 6 M ar 2 00 9 GRADIENT FLOW APPROACH TO GEOMETRIC CONVERGENCE

نویسنده

  • ANDREW V. KNYAZEV
چکیده

Preconditioned eigenvalue solvers (eigensolvers) are gaining popularity, but their convergence theory remains sparse and complex. We consider the simplest preconditioned eigensolver— the gradient iterative method with a fixed step size—for symmetric generalized eigenvalue problems, where we use the gradient of the Rayleigh quotient as an optimization direction. A sharp convergence rate bound for this method has been obtained in 2001–2003. It still remains the only known such bound for any of the methods in this class. While the bound is short and simple, its proof is not. We extend the bound to Hermitian matrices in the complex space and present a new self-contained and significantly shorter proof using novel geometric ideas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 40 80 15 v 1 9 A ug 2 00 4 A HYPER - GEOMETRIC APPROACH TO THE BMV - CONJECTURE

We provide a representation of the (signed) BMV-measure by stochastic means and prove positivity of the respective measures in dimension d = 3 in several non-trivial cases by combinatorial methods.

متن کامل

ar X iv : m at h / 06 09 80 7 v 3 [ m at h . A P ] 1 9 D ec 2 00 6 GEOMETRIC AND PROJECTIVE INSTABILITY FOR THE GROSS - PITAEVSKI EQUATION

— Using variational methods, we construct approximate solutions for the Gross-Pitaevski equation which concentrate on circles in R. These solutions will help to show that the L flow is unstable for the usual topology and for the projective distance.

متن کامل

ar X iv : 0 80 1 . 30 99 v 2 [ m at h . N A ] 1 6 Ju n 20 08 GRADIENT FLOW

Preconditioned eigenvalue solvers (eigensolvers) are gaining popularity, but their convergence theory remains sparse and complex. We consider the simplest preconditioned eigensolver— the gradient iterative method with a fixed step size—for symmetric generalized eigenvalue problems, where we use the gradient of the Rayleigh quotient as an optimization direction. We prove a known sharp and simple...

متن کامل

ar X iv : m at h - ph / 0 30 30 45 v 1 1 9 M ar 2 00 3 p – Adic pseudodifferential operators and p – adic wavelets

We introduce a new wide class of p–adic pseudodifferential operators. We show that the basis of p–adic wavelets is the basis of eigenvectors for the introduced operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009